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Abstract
We consider a spatial version of Watson and Lovelock’s tutorial model of
vegetation-climate feedbacks (Watson A J and Lovelock J E 1983 Biological
homeostasis of the global environment: the parable of daisyworld Tellus B 35
284–9). Two simple plant types compete on a hypothetical planet, stabilizing
the global temperature via an albedo feedback. Numerical solutions show
an alternating pattern of the two plant types. A stability analysis shows that
there are two mechanisms involved in the pattern formation. A Turing-like
process causes the uniform equilibrium state to be unstable to non-constant
perturbations and the solution tends towards a striped pattern. This solution
is then modified by a mechanism which restricts stripe length and results in
subdivision. By calculating the associated temperature function we show how
the maximum stripe length can be determined and the stability of different
patterns assessed.

Mathematics Subject Classification: 35B40, 35K57, 92D40

1. Introduction

The global climate and terrestrial biosphere form a complex coupled system of which there
is an increasingly urgent need to deepen our understanding. Sophisticated climate simulation
models can give some insight but their very complexity can often be a hindrance. In contrast
to this, very simple, transparent models can be useful for identifying and understanding the
fundamental mechanisms of a system. Daisyworld is just such a model. This was originally
developed by Watson and Lovelock [1] in support of the idea that the collective biota of the
Earth actively manipulates the climate via feedbacks, checks and balances in order to maintain
an optimum environment for life to survive. This is not a new concept [2], but was first
formulated scientifically in the 1970s by Margulis and Lovelock [3]. Daisyworld aims to
demonstrate how such a mechanism could work without the biota having a global knowledge
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and understanding of the climate system. It is formulated as an ordinary differential equation
model describing a hypothetical planet, warmed by a sun and populated by just two types of
plant, black daisies and white daisies, identical in every way except colour. The daisies have
a temperature dependent growth rate. White surfaces reflect more of the Sun’s energy than
black and so the variation in local temperature establishes a difference between the two. In the
absence of daisies, an increase in solar radiation leads to an equivalent increase in surface
temperature. However, Watson and Lovelock [1] found that when the daisies are included in
the model their relative areas adjust in such a way that the surface temperature remains very
close to the optimum for daisy survival over a broad range of values for the solar radiation.

There has been considerable investigation of the control mechanisms in the daisyworld
model [4–6] and a number of extensions including the addition of further trophic levels [7],
evolving daisies [8,9] and two-dimensional space, formulated as a cellular automaton [10]. It
has also been investigated as a control system for glucose in the body [11]. A one-dimensional
version has been constructed by applying the original equations at each point in space of a
one-dimensional projection of a sphere [13]. Numerical solutions of this model resulted in an
unexpected striped pattern composed of segregated colonies of black and white daisies. This
is interesting as it suggests that there may be a link between the requirement for environmental
regulation and the way the vegetation is distributed over the Earth’s surface. The purpose of this
paper is to provide a relatively detailed mathematical explanation for the patterns observed in
that one-dimensional daisyworld model. As well as being an interesting mathematical problem
in its own right, this shows that the patterns are a genuine property of the system and not a
numerical artefact. It also illuminates the way in which global and local feedback mechanisms
can interact. The patterns described in [13] result from a model based on a one-dimensional
projection of a sphere. However, in order to understand the mechanisms involved it is expedient
to study a similar, but simpler model based one-dimensional projection of a plane. This is given
by equations (1)–(3). A more detailed description of the model is given in the appendix.

∂u

∂t
= uf (u, v, w) = u[(1 − δ(C − 5(u − v − 1) − w)2)(1 − u − v) − γ ], (1)

∂v

∂t
= vg(u, v, w) = v[(1 − δ(C − 5(u − v + 1) − w)2)(1 − u − v) − γ ], (2)

∂w

∂t
= h(u, v, w) +

∂2w

∂x2
= (2 − u + v)R − σw4 +

∂2w

∂x2
(3)

for −π/2 < x < π/2 and with Neumann boundary conditions wx = 0 at x = ±π/2.
In equations (1)–(3), u = u(x, t) and v = v(x, t) represent the populations, in terms of

the fractional area occupied, of two hypothetical plants (daisies) and w = w(x, t) represents
the surface temperature. R, σ , C, δ and γ are constants. R ∼ 200 determines the incoming
solar radiation reaching the surface, σ = 5.67 × 10−8 is the Stefan–Boltzmann constant
and is used to determine the outgoing long wave radiation at the surface, C = 295.5 is
the optimal temperature for daisy growth, δ = 0.003 265 is the intrinsic growth rate and
γ = 0.3 the death rate. These parameter values are retained from the original daisyworld
model [1]. The numerical solutions shown in this paper were carried out by applying a 501
point spatial discretization, with a central difference scheme for the derivative, to each partial
differential equation. The resultant system of 1503 ordinary differential equations were then
solved simultaneously using a variable time-step numerical solver [12]. The objective of this
paper is to explain the patterning observed in these numerical solutions. Our analysis requires
the value of R to be restricted to a given range and particularly exploits the fact the δ is small.
Although the sensitivity of the model to the other parameters values is not considered here,
the mathematical analysis should remain valid over a fairly broad parameter space.
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2. Overview

The pictures in figure 1, for the large time solutions u(x), v(x), w(x) to equations (1)–(3),
are striking. The daisy concentrations are either in a black phase or white phase and at no
point in space is there coexistence of the two types. That is, for each x, we have either
u(x) ≈ constant, v(x) = 0 or u(x) = 0, v(x) ≈ constant. The temperature profile w(x)

exhibits mild variations, increasing in the regions where u(x) = 0 and decreasing in the
regions where v(x) = 0. The main objective of this paper is to explain these striped patterns.
Here, we present a brief overview.

The initial data for the numerical simulation shown in figure 2 were very close to a uniform
black phase equilibrium. In response to a small non-uniform perturbation in w (see the caption
of figure 1) the system quickly evolves to a uniform coexistence equilibrium (u(x) = 0.37,
v(x) = 0.34, w(x) = 298) by t = 50. However, this coexistence equilibrium is unstable
via a Turing-like mechanism, the effect of which is clearly seen by t = 250. After this, the
solution continues to slowly evolve via an additional mechanism to its final, stable, equilibrium
state (t = 1000). This latter mechanism is the result of the temperature rising in regions in
which u(x) = 0 (black phase). The larger such a region is, the greater the increase in the
local temperature. If this temperature becomes too high it causes an instability in equations (1)
and (2) and a small white phase (v(x) = 0) subdivides the region. Similarly, a large white
phase will reduce the temperature too much and be subdivided by a small black phase.

It turns out to be useful to study the pair of non-spatial ordinary differential equations
which result from setting the temperature to be constant in equations (1) and (2). This analysis
is carried out in section 3. In section 4, we study the equilibrium solutions of equations (1)–(3)
which do not depend on x. De Gregorio et al [4] perform a similar analysis but reduce the
system to two ordinary differential equations by assuming that the temperature (equation (3))
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Figure 1. Numerical solution at t = 1000 (taken to be equilibrium) of equations (1)–(3) after an
aperiodic perturbation to the temperature w. Initial conditions were close to the unstable black
phase equilibrium: u0 = 0.0001, v0 = 0.377, w0 = 304.98 everywhere except w0(−1.49) =
304.98 + 0.5, w0(−0.38) = 304.98 + 0.2, w0(0.685) = 304.98 − 0.1. R = 206.3. The two daisy
populations occupy distinct intervals which do not overlap. Peaks and troughs in the temperature
profile match the pattern of the daisies.
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Figure 2. Evolution of the numerical solution for the white daisy population u in equations (1)–(3)
after an aperiodic perturbation to the temperature w. Initial conditions were close to the
unstable black phase equilibrium: u0 = 0.0001, v0 = 0.377, w0 = 304.98 everywhere except
w0(−1.49) = 304.98 + 0.5, w0(−0.38) = 304.98 + 0.2, w0(0.685) = 304.98 − 0.1. R = 206.3.
At t = 50 the system reaches the coexistence equilibrium. By t = 150 it is apparent that this is
unstable. By t = 1000 a stable pattern has been established.

has a much faster timescale and is always at equilibrium. We analyse the full system and in
particular show that the coexistence equilibrium is stable to constant perturbations but unstable
when diffusion is included. This instability behaves in a similar way to a Turing mechanism to
produce a striped pattern, alternating between the all black and all white stable states. This is
then further modified by additional instabilities. In order to understand the processes involved
in this we study a modified problem, in which there is only one interval of the black phase
present, in section 5. We show that there is a maximum possible length, depending on the solar
radiation, for a black stripe, and that stripes exceeding this length will subdivide. In section 6
we consider solutions for multi-phase patterns. Finally, we briefly discuss two modifications
to equations (1)–(3) and the relevance of the model to the real Earth.

3. Analysis of the ordinary differential equations

To understand the behaviour of the system described by equations (1)–(3) it is helpful to first
understand the stability of the system of two ordinary differential equations which arises when
w is set to be constant in equations (1) and (2). In particular we find that the all white phase and
all black phase equilibria are stable but that the zero and coexistence equilibria are unstable.
We also find that the solution develops very slowly in the region close to the coexistence
equilibrium. Throughout this section we write f (u, v) for f (u, v, w) and similarly for g.
With applications to the full system (1)–(3) in mind we assume that f (0, 0) and g(0, 0) are
positive; for the parameter values given this means that w is in the range 286 < w < 305.

The ordinary differential equations

u̇ = uf (u, v), v̇ = vg(u, v) (4)

have four equilibrium solutions with 0 � u, v � 1: the zero solution (0, 0), the all white
phase (ū(w), 0), the all black phases (0, v̄(w)), and the coexistence phase (ūc(w), v̄c(w)). To
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assess their stability we consider the eigenvalues of the linearization of (4) about each of these
equilibria.

3.1. Stability of zero equilibrium

The zero solution is unstable, with the linearization having the two positive eigenvalues f (0, 0)

and g(0, 0).

3.2. Stability of all white equilibrium

For the equilibrium (ū(w), 0), u = ū is a solution of the cubic equation f (u, 0) = 0.
Since the coefficient of u3 in f (u, 0) is positive and f (0, 0) > 0, f (1, 0) < 0, there is
a unique solution u = ū(w) with fu(ū(w), 0) < 0. We can obtain an approximation to
u = ū(w) by making use of the small parameter δ. Writing the equation f (u, 0) = 0 as
δ(w − C − 5 + 5u)2 = (1 − γ − u)(1 − u)−1, we have that

ū(w) = 1 − γ − γ δ(w − C − 5γ )2 + O(δ2), (5)

which is valid if (w−C −5γ )2 is not too large. We will make use of this approximation in the
study of the stable equilibria of the full set of equations. The eigenvalues of the linearization
about (ū(w), 0) are ū(w)fu(ū(w), 0) < 0 and λ(w) = g(ū(w), 0). Since f (ū(w), 0) = 0,

λ(w) = f (ū(w), 0) + δ(1 − ū(w))[(C − w − 5ū(w) + 5)2 − (w − C − 5ū(w) − 5)2],

which simplifies to

λ(w) = 20δ(1 − ū(w))(C − w − 5ū(w)).

The sign of λ(w) determines the stability of (ū(w), 0). Using (5), there exists w1 such that
λ(w) > 0 for w < w1 and λ(w) < 0 for w > w1 with w1 = C − 5(1 − γ ) + O(δ). We can
find an exact expression for w1 by using f (ū(w), 0) = g(ū(w), 0) = 0 at w = w1. Using
5ū(w1) = C − w1 in the equation f (u, 0) = 0 we obtain

ū(w1) = b, w1 = C − 5b, (6)

where

b = 1 − γ (1 − 25δ)−1. (7)

Hence, this equilibrium is stable for w > w1 and unstable for w < w1.

3.3. Stability of all black equilibrium

Similarly, there is a unique equilibrium (0, v̄(w)) where v = v̄(w) is the solution of
g(0, v) = 0. We can find an approximation to this solution in the same way as above to
obtain

v̄(w) = 1 − γ − γ δ(w − C + 5γ )2 + O(δ2), (8)

which is valid if (w − C + 5γ )2 is not too large. The eigenvalues of the linearization about
this equilibrium are v̄(w)gv(0, v̄(w)) which is negative and f (0, v̄(w)) = 20δ(1 − v̄(w))

(w − C − 5v̄(w)). As above, we can find where this eigenvalue is zero by solving the
simultaneous equations f (0, v) = g(0, v) = 0. A calculation shows that f (0, v̄(w)) = 0
when w = w2 with

v̄(w2) = b, w2 = C + 5b. (9)

Hence, this equilibrium is stable if w < w2 and unstable if w > w2.
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3.4. Stability of coexistence equilibrium

The coexistence phase (ūc(w), v̄c(w)) is found by solving f (u, v) = g(u, v) = 0. Using the
variables u + v and u − v, these equations can be solved exactly to obtain

ūc(w) = C − w + 5b

10
, v̄c(w) = w − C + 5b

10
. (10)

Using the formulae for w1 and w2 given in (6) and (9) we can also write this as

ūc(w) = w2 − w

10
, v̄c(w) = w − w1

10
. (11)

The above shows that the coexistence phase degenerates into the white phase (ū(w), 0) at
w = w1 and into the black phase (0, v̄(w)) at w = w2. For w1 < w < w2, we have that
ūc(w) and v̄c(w) lie between 0 and 1 while for w outside this range, either ūc(w) or v̄c(w) is
negative. The eigenvalues of the linearization about the coexistence phase satisfy

λ2 − λ(ūcfu + v̄cgv) + ūcv̄c(fugv − gufv) = 0. (12)

This equation can be solved exactly to show that there is one negative eigenvalue and a small
positive eigenvalue of order δ. We exploit the small parameter δ to prove this instability
result; similar calculations will be used in the next section when studying the stability of the
coexistence phase for the full equations. Since w1 < w < w2, all the partial derivatives of f

and g are equal to −1 + O(δ). Hence, fugv − gufv = αδ + O(δ2) where α is a constant and
using equation (10), ūcfu + v̄cgv = −b + O(δ). It follows that the equation for the eigenvalues
takes the form

λ2 + λ(b + O(δ)) + ūcv̄cαδ + O(δ2) = 0. (13)

Since δ is small, the eigenvalues are λ1 = −b + O(δ) < 0 and λ2 = −αb−1ūcv̄cδ + O(δ2).
Since ūcv̄c is positive, the sign of λ2 depends on the sign of α. A straightforward calculation
shows that α = −200(1 − b) < 0 so that λ2 is positive and the coexistence phase is unstable.

3.5. Phase plane analysis

Figure 3 shows the phase plane portrait for the ordinary differential equation system (4) for a
particular w such that w1 < w < w2. The stable manifold of the coexistence phase divides the
phase plane into regions in which solutions converge either to (ū(w), 0) or to (0, v̄(w)). The
unstable manifold U of the coexistence phase connects to (ū(w), 0) and (0, v̄(w)). A typical
solution spends a lot of time near U before converging to an equilibrium point. To see this, let
y = u + v + γ − 1 and z = u(u + v)−1. A calculation shows that

ẏ = −y(y + 1 − γ ) + O(δ), ż = O(δ). (14)

From (14), y converges to U , which in these coordinates is given by y = O(δ), in order one
time. The z variable describes the slow flow on U .

4. Space independent equilibria

We now return to the full system, as given by equations (1)–(3) and analyse the stability of
solutions which do not depend on x. If (u, v, w) is such a solution then (u, v) is one of the
four equilibrium solutions for the ordinary differential equations (4) considered in the previous
section and w is a solution of

[2 − u(w) + v(w)]R − σw4 = 0. (15)
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Figure 3. Phase plane for the ordinary differential equation system (4) with constant w = 296. The
stable manifold of the coexistence phase divides the plane into regions in which solutions converge
to either the white only equilibrium or the black only equilibrium.

From the previous section the white phase (ū(w), 0) is an unstable equilibrium of equation (4)
if w < w1. Solving equation (15) with u = ū(w) and v = 0 gives the equilibrium temperature
w = w̄u (note that this assumes u = ū(w) exists, see remark 1). For the range of values
of R that we consider, w̄u is smaller than w1. Using this we show that the equilibrium
(ū(w̄u), 0, w̄u) of equations (1)–(3) is unstable to constant perturbations. Similarly, we show
that the equilibrium solutions of equations (1)–(3) corresponding to the black phase and the
zero solution are unstable to constant perturbations. The coexistence phase (ūc(w), v̄c(w)) is
unstable for the ordinary differential equations (4). We show that the equilibrium solution of
equations (1)–(3) corresponding to this is stable to constant perturbations but unstable when
diffusion is included.

We assume throughout this section that w̄u < w1 and that w̄v > w2. To determine the
restrictions that this places on R, consider the equation [2 + v̄(w)]R − σw4 = 0 which has
the solution w = w̄v . Since the left-hand side of this equation is a decreasing function of w,
w̄v > w2 implies that [2 + v̄(w2)]R > σw4

2. Using the formula for w2 and v̄(w2) given by (9),
we obtain

R > σ(2 + b)−1(C + 5b)4. (16)

Similarly, by considering the equation satisfied by w̄u, we obtain (2 − ū(w1))R < σw4
1 and

R < σ(2 − b)−1(C − 5b)4. (17)

4.1. Stability of zero equilibrium

For constant perturbations to the equilibrium (0, 0, w̄), the linearization has one negative
eigenvalue hw and two positive eigenvalues f (0, 0, w̄) and g(0, 0, w̄). Hence, it is unstable.
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4.2. Stability of all white/all black equilibrium

For constant perturbations to the equilibrium (ū, 0, w̄u), the linearized matrix is given by

A =

ūfu ūfv ūfw

0 g 0
hu hv hw


 . (18)

Let E(λ) = det(A − λI). Then E(λ) is a cubic in λ, with leading term −λ3, so to prove that
A has a positive eigenvalue it is sufficient to show that E(0) = det(A) > 0. Now

det(A) = ūg[fuhw − fwhu],

where all the functions are evaluated at (ū, 0, w̄u). Clearly, hw and hu are negative and,
since w̄u < w1, we have that g(ū, 0, w̄u) is positive. From the previous section, fu < 0 at
the equilibrium. It remains to show that fw = 2δ(C + 5 − w̄u − 5ū)(1 − ū) > 0. Since
w̄u < w1 = C − 5b,

fw > 2δ(C + 5 − w1 − 5ū)(1 − ū) = 10δ(b + 1 − ū) > 0,

so that det(A) > 0 as required. Hence, the white phase equilibrium is unstable. A similar
proof shows that the black phase equilibrium is unstable to constant perturbations.

4.3. Uniqueness and stability of coexistence equilibrium

Before considering the stability of the coexistence phase we show that it is unique. The
coexistence phase (ūc(w), v̄c(w)) exists for w1 < w < w2. The corresponding equilibrium
temperature w̄c is a solution of

[2 − ūc(w) + v̄c(w)]R − σw4 = 0.

Using equation (10) for ūc(w) and v̄c(w), this can be written as

m(w) =
[

2 +
w − C

5

]
R − σw4 = 0. (19)

As demonstrated by other researchers [1,6], this shows that the equilibrium temperature in the
coexistence phase of the space-independent system does not depend on the values of u or v.

Now m(w1) = (2 − b)R − σw4
1 and m(w2) = (2 + b)R − σw4

2. Using the bounds on R

given by (16) and (17), m(w1) < 0 and m(w2) > 0. For w1 < w < w2, 5m′(w) = R−20σw3

so using (16),

5(2 + b)m′(w) > σw3
2 (C − 40 − 15b) > 0.

Thus, there exists a unique solution of m(w) = 0 and a unique coexistence phase.
We now assess the stability of the coexistence equilibrium. For constant perturbations of

the coexistence phase, the eigenvalues of the linearization are the solutions of E(λ) = 0 where

E(λ) =
∣∣∣∣∣∣
ūcfu − λ ūcfv ūcfw

v̄cgu v̄cgv − λ v̄cgw

hu hv hw − λ

∣∣∣∣∣∣ . (20)

We make use of the small parameter δ to locate the zeros of E(λ). Expanding the third column
gives

E(λ) = (hw−λ)

∣∣∣∣ūcfu− λ ūcfv

v̄cgu v̄cgv − λ

∣∣∣∣ − v̄cgw

∣∣∣∣ūcfu − λ ūcfv

hu hv

∣∣∣∣ + ūcfw

∣∣∣∣v̄cgu v̄cgv − λ

hu hv

∣∣∣∣ .
(21)
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The first determinant in (21) was calculated in the previous section (see equations (12) and (13)).
Hence, the first term in (21) is

(hw − λ)[λ2 + λ(b + O(δ)) + ūcv̄cαδ + O(δ2)], (22)

where α = −200(1 − b) < 0. A calculation shows that the second and third terms in (21) are
of order δ and that the equation E(λ) = 0 takes the form

(hw − λ)[λ2 + λ(b + O(δ)) + ūcv̄cαδ + O(δ2)] − 40R(1 − b)ūcv̄cδ + a(δ)λ + O(δ2) = 0,

(23)

where a(δ) = O(δ). Since δ is small, the eigenvalues are λ1 = hw + O(δ) < 0,
λ2 = −b + O(δ) < 0 and λ3 = βδ + O(δ2), where

bhwβ = 40R(1 − b)ūcv̄c − αhwūcv̄c. (24)

Using α = −200(1 − b) and hw < 0, β has the same sign as −m′(wc) where m(w) is
defined by equation (19). We showed above that m′(w) > 0 for w1 < w < w2 so that β is
negative. Hence, the third eigenvalue is negative and the coexistence phase is stable to constant
perturbations.

4.4. Stability under non-constant perturbations

We now consider perturbations of the form cos(kx) in the w variable of the coexistence phase.
The eigenvalues of the linearization are the solutions of E(λ, k) = 0 where E(λ, k) is the
same as that given in (20) except that the term hw − λ is replaced by hw − λ − k2. Hence
the equation E(λ, k) = 0 is the same as (23) except that the term hw − λ is replaced by
hw − λ − k2. The eigenvalues are λ1(k) = hw − k2 + O(δ) < 0, λ2(k) = −b − k2 + O(δ) < 0
and λ3(k) = β(k)δ + O(δ2), where

b(hw − k2)β(k) = 40R(1 − b)ūcv̄c − α(hw − k2)ūcv̄c. (25)

As above, a calculation shows that β(k) has the same sign as k2−m′(wc). Hence the coexistence
phase is unstable to a cos(kx) perturbation for k2 > m′(wc). For the parameter values given,
the first unstable mode is k = 6.

Remark 1. In order to discuss the equilibrium temperatures w̄u and w̄v we need ū(w) and v̄(w)

to exist. From the previous section, we need f (0, 0) and g(0, 0) to be positive. A calculation
shows that this requires C + 5 − (1 − γ )δ−1/2 < w < C − 5 + (1 − γ )δ−1/2. This in turn leads
to upper and lower bounds for R.

5. Localization

The results of the previous section show that all the space independent equilibrium solutions
for the full system (equations (1)–(3)) are unstable. However, in section 3, it was shown that
the black phase and white phase solutions are stable for the non-spatial ordinary differential
equations (4). Motivated by this and the numerical results we look for equilibrium solutions
of the full set of equations in which we have alternating regions of black and white phases.
From the equilibrium solution for equation (3) it is clear that if u = 0 (black phase) then w

will increase while if v = 0 (white phase) then w will decrease. The effect of diffusion means
that peaks in the temperature profile will occur over regions in the black phase and troughs will
occur over regions in the white phase. Increasing the length of the region in the black phase
will result in a higher maximum temperature. If this maximum exceeds the critical stability
point w = w2 then, from section 4, the black phase solution will be unstable. Therefore, black
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regions above a certain length are unstable and will not occur in a stable equilibrium solution.
Similarly, large regions in the white phase will not occur in a stable equilibrium since this
would result in a minimum temperature below w = w1.

In order to get a more detailed picture of how this mechanism works we now study a
problem in which there is only one interval of the black phase present. Throughout this section
we study equations (1)–(3) but restrict the daisies to an interval of width M by assuming that
(1) and (2) hold for |x| � M and that u(x, t) = v(x, t) = 0 for |x| > M .

5.1. Numerical results

Numerically determined equilibrium solutions for the modified system described above are
shown in figure 4. When M is small, the black phase occupies the region |x| � M while the
temperature connects the colder region |x| > M to the hottest point at x = 0 (figure 4(a)). If
we increase M this equilibrium becomes unstable and a patch of white phase appears as shown
in figure 4(b). The timescale of the evolution of the white phase is slow. As shown in figure 5
there is almost no sign of it until t = 800 but it then establishes quite rapidly.

5.2. Phase plane and stability analysis

To understand these numerical results we study the equilibrium solution of equation (3) with
u(x) = 0 for all x , v(x) = v̄(w(x)) for |x| � M and v(x) = 0 otherwise. Let

k1(w) = 2R − σw4, k2(w) = R(2 + v̄(w)) − σw4. (26)

Then, by symmetry we need only study:

w′′(x) + k(w) = 0, w′
(
−π

2

)
= w′(0) = 0 (27)

with w, w′ continuous at x = −M and where k(w) = k1(w) for x < −M and k(w) = k2(w)

for −M < x � 0.
The equation

w′′(x) + k1(w) = 0 (28)

has a saddle point at w = w̄ = (2Rσ−1)1/4. Since we are looking for a stable equilibrium we
assume throughout this section that w̄ < w2. For w > w̄, k1, k

′
1 and k′′

1 are negative. Solutions
of (28) with w′ = 0 when w = α are given by

w′2 = 2[K1(α) − K1(w)], (29)

where K ′
1(w) = k1(w). A schematic phase plane for (28) in the region w > w̄ is shown in

figure 6(a).
The equation

w′′(x) + k2(w) = 0 (30)

has a saddle point at w = w̄v , and for w < w̄v we have that k2 is positive while k′
2 and k′′

2 are
negative. Solutions of (30) with w′ = 0 when w = β are given by

w′2 = 2[K2(β) − K2(w)], (31)

where K ′
2(w) = k2(w). A schematic phase plane for (30) in the region w < w̄v is shown in

figure 6(b).
We construct a solution to the boundary value problem (27) by following an orbit of (28)

and then switching to an orbit of (30) as shown in figure 6(c). To get some insight suppose
that w is a solution of (27) with M small. The solution of (28) has to connect w′(−π/2) = 0
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Figure 4. Numerical solutions at t = 1000 (taken to be equilibrium) of equations (1)–(3)
when u(x, t) = v(x, t) = 0 for |x| > M . Initially u(x) = v(x) = 0 for |x| > M and
u(x) = v(x) = 0.001 for |x| � M , w = 292 for all x. R = 206.3. (a) M = 0.132, (b) M = 0.138.
The presence of a black stripe leads to a peaked temperature profile (a). If the width of the stripe
exceeds a critical value the maximum temperature exceeds the stability threshold of the black phase
equilibrium and the stripe is split by a region of white phase (b).

to w′(−M), while the solution of (30) connects w′(−M) to w′(0) = 0. If α = w(−π/2) is
not close to the equilibrium of (28) then w′(−M) will be bounded away from 0. Since M is
small it will be impossible for a solution of (30) to connect w′(−M) to w′(0) = 0. On the
other hand, if α = w(−π/2) is close to the equilibrium of (28), then w(−M) will be close to
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Figure 5. Evolution of a subdividing white phase when equations (1)–(3), with u(x, t) =
v(x, t) = 0 for |x| > M , are solved numerically for M = 0.138. Initially, u(x) = v(x) = 0
for |x| > M and u(x) = v(x) = 0.001 for |x| � M , w = 292 for all x. Initially, the transition is
slow and little change can be discerned until t = 800. After this point the transition becomes quite
rapid.

(a) (b) (c)

Figure 6. Schematic phase planes of (a) equation (28), (b) equation (30) and (c) the combination
of these to find the solution to equation (27).

α and w′(−M) will be small enabling a connection to be made by (30). As M is increased we
have to increase α = w(−π/2) to get a solution of (27).

5.3. Existence of solutions

Suppose that w(−π/2) = α, w(0) = β, and that the orbits of (29) and (31) intersect at w = p.
Putting x = −M in (29) and (31) we obtain

w′2(−M) = 2[K1(α) − K1(p)] = 2[K2(β) − K2(p)] (32)

and we can use this to express β = β(α) as a function of α. Using (29) and (31), for w to be
a solution of (27) with w(−π/2) = α we require L1(α) + L2(α) = π/2, where

L1(α) =
∫ p

α

[2(K1(α) − K1(w))]−1/2 dw, (33)

L2(α) =
∫ β(α)

p

[2(K2(β(α)) − K2(w))]−1/2 dw. (34)
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We outline a proof of the existence of a solution to equation (27). Fix p > w̄ and for α < p

set L(α) = L1(α) + L2(α). We need to show that L(ᾱ) = π/2 for some ᾱ. A calculation
(see remark 2) shows that L′

1(α) and L′
2(α) are negative. Also, L(p) = 0 and L(α) → ∞

either as α → w̄ or for some larger α if the orbit of equation (28) intersects the stable manifold
of the equilibrium w̄v of (30). Hence, L(ᾱ) = π/2 for some ᾱ and we have a solution to (27)
with M = L2(ᾱ).

5.4. The interval width, M

To get a more direct link between the solution w and M we consider how ᾱ(p), β̄(p) and
L1(ᾱ(p)) depend on p. A calculation shows that ᾱ(p) and β̄(p) are increasing functions of
p while L1(ᾱ(p)) is a decreasing function of p. Hence, increasing M increases w(−π/2)

and w(0).
A solution w of (27) will be stable if its maximum value is less than w2. This maximum

is equal to w(0) and is an increasing function of M . A numerically computed graph of w(0)

against M is shown in figure 7(a).
The critical interval width Mc is the value of M for which w(0) = w2. For applications

to the full system it is important to see how Mc depends on R. Intuitively Mc will be a
decreasing function of R since increasing R will raise the temperature of the black phase. To
prove that M ′

c(R) < 0 for w1 < w < w2, fix M and let w be a solution of (27). Writing
y(x) = ∂w(x)/∂R, a calculation shows that y satisfies an equation of the form

y ′′(x) = A(x)y − B(x), y ′
(
−π

2

)
= y ′(0) = 0, (35)

where A(x) and B(x) are positive. It follows from (35) that y(0) > 0. Hence, if w(x, R1) and
w(x, R2) are solutions of (27) with R1 > R2 and M fixed, then w(0, R1) > w(0, R2). The
result follows. A numerically computed graph of Mc against R is shown in figure 7(b).

5.5. Timescale of subdivision

When M > Mc, the numerical results shown in figure 5 indicate the long timescales involved
in the evolution of the white phase. This can be explained by using the results of section 3
and in particular equation (14). The solution u(x, t), v(x, t) initially approaches the unstable
manifold U of the coexistence phase (t = 25 in figure 5). At this time, v(x, t) is close but
not equal to v̄(w), u(x, t) is small but non-zero, while w(x, t) < w2. From equation (14),
u(x, t), v(x, t) converges to the black phase equilibrium (0, v̄(w)) in O(δ−1) time (t = 500 in
figure 5). At this time, we have that w(x, t) is marginally greater than w2 and the equilibrium
(0, v̄(w)) becomes unstable. The manifold U now connects this equilibrium to (ū(w), 0) and
by equation (14) the solution takes O(δ−1) time to reach this point (t = 1000 in figure 5). This
approach could be formalized by exploiting the small parameter δ and using centre manifold
theory [15].

Remark 2. As a sample calculation we compute L′
1(α) and show that it is negative. Since the

integrand for L1(α) has a singularity at w = α some care is needed. The standard trick is to
use the substitution w = αu. A routine calculation then shows that

2α2L′
1(α) = −2p[2(K1(α) − K1(p))]−1/2 + α

∫ p

α

H(w)[2(K1(α) − K1(w))]−3/2 dw,

where

H(w) = 2[K1(α) − K1(w)] + wK ′
1(w) − αK ′

1(α).

Since H(α) = 0 and H ′(w) = wK ′′
1 − K ′

1 = −3σw4 < 0, it follows that L′
1(α) is negative.
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Figure 7. (a) Numerically determined maximum temperature, w(0), depending on the width M of
the black phase. Here, R = 206.3. Clearly w(0) is an increasing function of M . (b) Numerically
determined maximum width Mc of the single black phase depending on the solar luminosity R.
Clearly, Mc is a decreasing function of R.

6. Multi-phase equilibrium solutions

Having studied the basic mechanisms of pattern formation we now briefly conjecture as to the
existence, stability and convergence of more complicated patterns consisting of many white
and black phase and show how the stability of such a pattern can be determined if it is periodic.
We partition I = [−π/2, π/2] into n intervals Ir then look for equilibrium solutions with (u, v)

equal to the white phase equilibrium and black phase equilibrium on adjacent intervals. We
code this by u(x) = 0, v(x) = v̄(w(x)) for x ∈ Ir with r even and u(x) = ū(w(x)), v(x) = 0
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for x ∈ Ir with r odd. Let

k2(w) = [2 + v̄(w)]R − σw4, k3(w) = [2 − ū(w)]R − σw4. (36)

Equilibrium solutions are then solutions of

w′′(x) + k(w) = 0, w′
(
−π

2

)
= w′

(π

2

)
= 0 (37)

with w, w′ continuous. Here, k(w) = k2(w) for x ∈ Ir with r even and k(w) = k3(w) for
x ∈ Ir with r odd.

We conjecture that for a wide range of parameters, for a given set of intervals Ir , a solution
exists. If a solution w of (37) exists such that (w − C − 5γ )2 is not too large then it is unique
(in the class of solutions enjoying the same bound). To see this, let y be the difference of two
such solutions. Using (5) and (8), y satisfies the boundary value problem

y ′′(x) + A(x)y = 0, y ′
(
−π

2

)
= y ′

(π

2

)
= 0, (38)

where A(x) < 0. Multiplying the above equation by y and integrating proves that y is zero.

6.1. Stability

For the single phase problem considered in the previous section, the condition for stability was
that the black phase interval length had to be less than some number. For (37), a solution will
be stable only if w1 < w(x) < w2 for all x. If w is stable then none of the black phase intervals
Ir can be too long since otherwise w(x) > w2 for some x. Similarly, there will be a bound on
the lengths of the white phase intervals. If all of the lengths of the black phase intervals are
small, then we conjecture that w will be unstable if w̄u < w1 since a solution of (37) would
need w to be close to w̄u. It would be interesting to find out which sets of intervals Ir produce
a stable equilibrium.

6.2. Convergence

Numerical solutions of equations (1)–(3) suggest convergence to an equilibrium solution
of (37). Suppose w̄(x) is a solution of (37) with w1 < w̄(x) < w2. We have not proved
that (ū(w̄(x)), v̄(w̄(x)), w̄(x)) is a stable equilibrium solution of equations (1)–(3). For a
heuristic argument to support the observed numerical solutions, suppose w(x, t) is a solution
of (3) with w1 < w(x, t) < w2. Then, we would expect that there would be intervals Ir such
that (u(x, t), v(x, t)) would converge to (0, v̄(w)) for x ∈ Ir if r is even and to the white
phase if r is odd. Replacing u and v in (3) by either (0, v̄(w)) or (ū(w), 0) we obtain a single
equation for w:

∂w

∂t
= φ(w) +

∂2w

∂x2
(39)

with φ(w) = [2 + v̄(w)]R − σw4 for x ∈ Ir and r even and φ(w) = [2 − ū(w)]R − σw4 for
x ∈ Ir and r odd. Equation (39) has the Lyapunov function

E(w) =
∫ π/2

−π/2

[
w2

x

2
− 
(w)

]
dx, (40)

where 
′ = φ. We obtain by differentiation and an integration by parts

dE(w)

dt
= −

∫ π/2

−π/2
w2

t dx. (41)

This implies [14] that such a solution would converge to the set of solutions of equation (37).
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6.3. Periodic patterns

If the intervals Ir are periodically arranged then we can construct a solution of (37). Fix x1

and x2 and let w be a solution on [0, x1 + x2] of

w′′(x) + k3(w) = 0 for 0 < x < x1,

w′′(x) + k2(w) = 0 for x1 < x < x1 + x2
(42)

with w′(0) = w′(x1 + x2) = 0 and w, w′ continuous. Solutions of (42) can be studied in the
same way as the single phase problem in the previous section. If we extend the solution w of
(42) as an even function of period 2(x1 +x2) then w will be a solution of (37) if (x1 +x2)n = π/2
for some integer n. The minimum of w is w(0) and the maximum is w(x1 + x2) and we would
expect w to be stable if w1 < w(0) and w(x1 + x2) < w2.

7. Discussion

In this paper, we have studied a spatial version of daisyworld based on a one-dimensional
projection of a plane. Numerical results show that this system of two static populations which
affect a third diffusing ‘reagent’ (temperature) generates striped patterns when subjected to
spatially non-uniform perturbations. Analysing the system formally shows that the stability
of the coexistence equilibrium is the key to this behaviour due to a small eigenvalue, the sign
of which is easily switched. If the temperature (w) is fixed then this eigenvalue is positive
and coexistence is unstable. If heat is allowed to diffuse the eigenvalue becomes negative
and coexistence is stable. However, a non-constant perturbation causes it to switch again,
rendering the solution unstable. Consideration of a related problem, in which a single stripe
is permitted, reveals a second instability mechanism which determines a maximum stripe
width. This leads to additional patterning by forcing stripes exceeding the maximum width to
subdivide. Analysis of multiphase patterns is not straight forward. Temperature profiles are
constructed for periodic patterns but, in general, this is a non-trivial, global problem.

There are two possible extensions to this model which we consider briefly. First, the
inclusion of a term to represent daisy diffusion may be expected to smooth the striped pattern
of the solution. However, numerical solutions of equations (1)–(3) with the term ε(uxx + vxx)

for ε of order 10−2 added to the right-hand side of equations (1) and (2) show that the striped
patterns persist. Second, equations (1)–(3) are a simplified form of equations (A11)–(A13)
which are a one-dimensional projection of a spherical model. Numerical solutions of
equations (A11)–(A13) display similar characteristics to those discussed (figure 8) and it is
reasonable to assume that similar mechanisms are operating. The most significant differences
arise from the cosine distribution for R̄(x). As a result of this, temperature conditions for
coexistence (w1 < w < w2) only occur over part of the region, the extent of which depends
on R. However, regardless of external perturbations, the numerical results indicate that
‘competitive exclusion’ and stripe formation always occurs.

Although this paper has been primarily concerned with the mathematics of the system,
further numerical experiments [13] have shown that the one-dimensional daisyworld retains
similar properties to the zero-dimensional model [1]. Under a gradual increase in R̄(x)

the striped pattern frequently adjusts in order to maintain a stable pattern but this does not
compromise the regulation of global temperature. Daisyworld is intended to be a tutorial
model and so there is no direct comparison with the real world. However, both the model
and the true vegetation of the Earth appear to have the potential for multiple stable states
dependent on initial conditions. In the model these correspond to the different patterns of
black and white colonies. In the real world there are a number of regions in which two
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Figure 8. Numerical solution at t = 1000 (taken to be equilibrium) of the spherical-based one-
dimensional daisyworld given by equations (A11)–(A13) with R̄(x) = 206.3 cos(x). Initially
u(x) = v(x) = 0.001, w(x) = 292 for all x. The striped patterning is similar to that observed in
the model derived from a plane, but no perturbation is required to initiate them.

alternative ecosystems could exist by modifying the local climate. For instance it is believed
that, under the same global climate, the Sahara region could be covered by dense vegetation
instead of desert [17], the Amazon rain forest could be arid pasture [18] and the Great Plains
of North America could be extensively wooded [19]. Perhaps the most intriguing point arising
from the daisyworld model is that not all patterns are stable. If a pattern which does not regulate
both the local and global climate is introduced then it will quickly adjust to one which does.
In the real world the interactions between the vegetation and climate are no doubt different
and significantly more complex. However, the results from daisyworld suggest that one factor
influencing the distribution of vegetation over the real Earth’s surface may be the requirement
for a pattern capable of global climate regulation. It is possible that there are a finite number
of such distributions and these determine the possible stable states of the system.
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Appendix. Description of the model and its relationship to the zero-dimensional form

For completeness, the equations for the original daisyworld model [1] and their extension to
one dimension [13] are described briefly here.

The surface temperature w of the planet is found by assuming that at equilibrium, the black
body radiation equals the solar energy absorbed at the surface. Thus, w is the equilibrium
solution of:

dw

dt
= (1 − A)R∗ − σw4, (A1)
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where R∗ is the energy reaching the surface from the sun, A is the surface albedo and σ is the
Stefan–Boltzmann constant. The surface albedo is given by

A = Agαg + Awu + Abv, (A2)

where Ag, Aw and Ab are the albedoes of bare ground, white daisies and black daisies,
respectively, and αg, u and v are the corresponding areas as a proportion of 1. The local
temperatures of each daisy type are given by

Tw = q(A − Aw) + w and Tb = q(A − Ab) + w. (A3)

Here, q is a implicit measure of heat diffusion between the three surfaces in the longitudinal
direction. This is assumed to operate very locally and is independent of the regional-scale
diffusion represented by the Laplacian operator.

Two ordinary differential equations, based on an area competition model [16] describe the
dynamics of the daisies:

du

dt
= u(αgβw − γ ) and

dv

dt
= v(αgβb − γ ), (A4)

where γ is the (constant) death rate and βw, βb are parabolic growth rates given by:

βw = 1 − δ(C − Tw)2 and βb = 1 − δ(C − Tb)
2. (A5)

Here δ is a small constant and C is the optimum temperature for growth.
Setting Ag = 0.5, Aw = 0.25, Ab = 0.75 and q = 20 (the parameter values used in the

original model [1]), equation (A2) becomes:

A = 1 − u − v

2
+

u

4
+

3v

4
= 2 − u + v

4
(A6)

and the equations in (A3) become:

Tw = 5(u − v − 1) + w and Tb = 5(u − v + 1) + w. (A7)

Using this leads to the ordinary differential equation model:

du

dt
= u[(1 − δ[C − 5(u − v − 1) + w]2)(1 − u − v) − γ ], (A8)

dv

dt
= v[(1 − δ[C − 5(u − v + 1) + w]2)(1 − u − v) − γ ], (A9)

dw

dt
= (2 − u + v)R − σ 4w (A10)

with R = R∗/4.
Finally, a term to represent heat diffusion is added to the right-hand side of equation (A10).

For the simplified model in the plane this is the one-dimensional Cartesian Laplacian, giving
equation (3). For the model operating on the surface of a sphere this is the spherical Laplacian
(with r and φ constant since only one dimension is considered). For the spherical case we
must also take into account the uneven distribution of solar radiation over the surface. Thus,
R is weighted using a cosine function: R̄(x) = R cos(x). The three equations describing the
one-dimensional projections of the spherical system are then:

∂u

∂t
= u[(1 − δ[C − 5(u − v − 1) − w]2)(1 − u − v) − γ ], (A11)

∂v

∂t
= v[(1 − δ[C − 5(u − v + 1) − w]2)(1 − u − v) − γ ], (A12)

∂w

∂t
= (2 − u + v)R̄(x) − σw4 +

1

cos(x)

∂

∂x

(
cos(x)

∂w

∂x

)
. (A13)
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