"メキシカン・ジェイの長期的な繁殖データと気象要因の相関について"

静岡大学大学院理工学研究科 山下龍巳 、嘉嶋康彦 、吉村仁 t-ya@sec.eng.shizuoka.ac.jp

はじめに

一般的に、生物個体群の繁殖率・生存率・死亡率・産卵率等々は、生息する地域の環境の影響を受けると考えられています。本研究では、実際のデータを基に生物個体群に影響を与える気象要因を調べます。研究の対象としカケスの1種メキシカン・ジェイのデータを使用します。

気象は、メキシカン・ジェイの繁殖率や生存率に影響を与えます。降水量や気温がメキシカン・ジェイの生活にどう関与するかを調べます。多少なりとも、メキシカン・ジェイの生活に影響を与える気象要因を発見しました。

データと分析

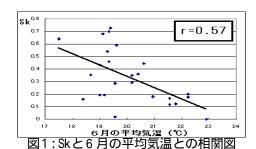
生物個体群には、アメリカ南部アリゾナ州で繁殖するカケスの1種メキシカン・ジェイ(Aphelocoma ultramarina;スズメ目カラス科)を対象としました。メキシカン・ジェイのデータは、1972~1998 年の間に観測された。メキシカン・ジェイの繁殖は3~6 月に行われ、さらに、4月中に全体繁殖の約60%が行われる。この時期は比較的乾燥しており、これは雨季を避けるためであると言われている。このデータから各年の次の値を求める。

Sr : 親の生存率 Sd : 生存した卵数 Sk : 卵の生存率

Rr: 1匹の親が育てた卵数

気象データは、1970~1998年の降水量・平均気温・最高気温・最低気温・平均最高気温・平均最低気温を毎月ごとに観測されたものを使用する。特徴は、3~6月は雨が少なく、7・8月にモンスーンがくる。

これらのデータから、回帰分析を行う。回帰分析とは、二つの要素を xy 座標上に点で表しその傾向を分析するもので、このプロットからおよその傾向線を引ける。次に、二つの要素の影響度を分析する相関分析を行う。相関分析では、相関係数 r によって影響度を判定する。 r は、 $0 \sim 1$ の値となる。 r が 1 に近いほど相関関係が強く、 r が 0 に近いほど相関関係が無い。


結果

各要素と各月の気象環境との相関係数 r 値の一例を次に示す。ここでは、各月の平均気温とメキシカン・ジェイの生存率等を比較した表で、r 0.4 になった組み合わせのセルは、背景を灰色にしたので、そこに注目してみる(表1)

次に r 値の高かった組合せの相関図を、1つ表示する(図1)

表1: 平均気温と生存率との r 値の表

	平均									繁殖								
	7月	8月	9月	10月	11月	12月	1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月
Sr	0.1	0.42	0.25	0.15	0.28	0.14	0.09	0.02	0.43	0.16	0.55	0.24	0.07	0.18	0.13	0.01	0.35	0.12
Rr	0.07	0.13	0.06	0.2	0.1	0.09	0.02	0.16	0.08	0.54	0.44	0.54	0.24	0.09	0.04	0.32	0.05	0.09
Sk	0	0.14	0.04	0.27	0.05	0.05	0.02	0.07	0.11	0.47	0.43	0.57	0.31	0.13	0.04	0.25	0.05	0.07
Sd	0.11	0.07	0.03	0.23	0.03	0.04	0.02	0.09	0.23	0.24	0.39	0.55	0.31	0.08	0.1	0.34	0.08	0.05

