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1 Assumptions and Modelling

1.1 Dynamics of age distribution

We denote the age distribution function of male age a and that of female age
a’ at time t by v(a,t) and w(a,t) respectively. In addition, c(a,a’,t) gives the
density of reproductive couple which consists of male with age a and female
with age a’ at time t.

We assume that the changes of v(a,t) and w(a,t) are occurred by the natural
death and the sex reversal from male to female. On the other hand, the change
of ¢(a, d’,t) is due to the separating and the coupling. The former occurs by the
death of male or female of couple, or by the alive separation of them.

Now, we define the constant separating rate D and the density-dependent
coupling rate S for reproductive couple. We assume that the coupling rate S
depends on the densities v, and w, of single male and female, defined by

ve(a,t) = U(a,t)—/oooc(a,a',t)da' (1)

we(a',t) = w(a’,t)—/o c(a,d,t)da. (2)

The integral of right side of (1) means the density of coupled male of age a at
time ¢, and that of (2) does the density of coupled female of age a’ at time ¢.

With these assumptions, our modelling for the changes of v(a,t), w(a,t) and
c(a,d’,t) in sufficiently small period h are given by

v(a+ h,t+h) —v(a,t)
= —8yh-v(a,t) — M(a)h - v(a,t) + o(h?) (3)
w(a’ +h,t+h) —w(d,t)
= —6uh-w(d,t) + M(a)h-v(d,t) + o(h?) (4)
cla+h,a’ + h,t+h)—c(a,d,t)
= —(8yh + 6uh) - c(a,d’,w) — Dh - ¢(a, ', w)
+5(a,d’;ve,we)h 4 o(h?),  (5)

where 6, and ¢, are the constant natural death rates for male and female
respectively, and M (a) the age-dependent sex reversal rate from male to female
at age a.

From (3), (4), and (5), we can derive the following partial differential equa-
tions to give the dynamics of age distributions v(a,t), w(a,t) and c(a,d’,t), as
shown in Appendix A:

ov(a,t) n O0v(a,t)

ot 5a = “dwlat) = M(a(at)  (6)




ow(a',t) N ow(a',t)

ot 5 = —dww(d t)+ M(a)u(d 1) (7)

dc(a,a’,t)  Ocla,dt) n Ocla,d ,t)
ot da da’

= —(0y + 6w)c(a,a’,t) — De(a,a’,t) + S(a, a’; ve, we) (8)

We assume that the initial age distributions for v(a,t) and w(a’,t) are not
everywhere zero, denoted by v(a,0) = vg(a), w(a’,0) = wo(a’), whereas that for
c(a,a’,t) is everywhere zero, c(a,a’,0) =0 (0 < a < 00;0 < a' < 0).

Since we assume that the reproduction is possible only by couples, the re-
cruitment as the boundary conditions are given by

v(0,1) = BAC(H) (9)

w(0,) = (1-HAC(E), (10)

where C(t) is the total number of couples at time ¢, defined by

C(t) = /Ooo /OOO c(a,d t)dadd’, (11)

and )\ is the birth rate per couple, 8 the male ratio at birth. Hence, S\ and
(1 — B)A indicate the number of male newborns per couple, and that of female.
We assume that both A and (§ are constant independently of time and parent’s
age. Besides, we assume that the newborn with age 0 cannot be coupled, so
that

c(a,0,t) = ¢(0,d’,t) = 0. (12)
Additional boundary conditions can be new given by
v(oco,t) = 0 (13)
w(oo,t) = 0 (14)
c(o0,d’,t) 0 (15)
c(a,00,t) = 0, (16)

since any individual cannot live forever.

1.2 Sex reversal rate
In this paper, we assume the following age-dependent sex reversal rate M (a):
0 (0<a<ae)
M(a) = (17)
m (e <a<o0).

After the critical age a., the sex reversal from male to female occurs at randam
with a constant rate, m. If a, — 0, the sex reversal occurs at any age. On the
other hand, if a, — oo, it is the case without sex reversal at any age.



1.3 Coupling rate

In this paper, we assume that S(a,a’; ve, w.) = r - vow,, where r is a positive
constant. This is the assumption of mass action between female and male to
couple, that is, the coupling is assumed to occur under the complete mixing of
females and males to give the random occurrence of coupling.

1.4 Dynamics of population size

From the age distribution functions, v(a,t), w(a,t) and c(a, a’,t), we can define
the population size of male, V'(¢), and that of female, W (t):

/00 v(a,t)da (18)
0

<
—
~+
G

W) = /O (e t)dd'. (19)

Besides, for mathematical convenience, we define here the subpopulation size of
male younger than age a.:

X(t) = /0 " o(a,t)da. (20)

Integrating (6), (7) and (8), we can derive the following dynamical system of
ordinary differential equations that govern the temporal variations of population
sizes defined by (11), (18), (19) and (20) (see Appendix B):

d‘;_f) = —8,V() + BAC() - m{V (1) - X (1)} (21)
%t(t) — BAC(D) — ,X (1) — v(ae,t) (22)
d‘Zt@ = S W () + (1 - BACH) +m{V (1) - X(1)} (23)
%it) = (0, 400w+ D)CHt) +7{V(t) = CHHW @) —C(t)}. (24)

As for v(ac,t) appeared in (22), we can derive the following result with the
method of characteristic curve for (6) (Appendix C):

BAC(t —a)e % (t > a.)
v(ae,t) = s (25)
vo(a. —t)e " (t<a.).

We assume that the initial population sizes V(0), X (0) and W (0) are positive:

V(o) — /Ooovo(a)da >0



>
=
(e}
=

I

a)da >0

a)da > 0.

|l
0
(o)
e
0
On the other hand, since ¢(a, =0,

/ / c(a,a’,0)dada’ = 0.

1.5 The condition for the population size

In our modelling, both population size of male and female are to be larger than

that of couple:
Cc*< V™
(26)
Ccr < W*.

2 Analysis

As the first step of our mathematical study, we separately consider three cases
in terms of the value of the critical age a.: 0, oo, and finite positive.

2.1 a.—
2.1.1 Dynamics of population sizes

Since this is the case when the sex reversal does not occur, the dynamics of
population sizes can be written as the following three dimensional dynamical
system derived from (21), (23) and (24):

av(e)

S = S0V +AAC() 27
dIZt(t) = =0 W (1) + (1= BAC(H) .
%§2= ~(du + 8 + D)C(t) + 7{V (1) = COHW (1) = C(H)}. (29)

2.1.2 Extinction state at three-dimensional differential equations

The extinction state (V*,W*,C*) = (0,0,0) is always locally stable. This can
be easily shown by the eigenvalue analysis for it. Indeed, the characteristic
equation about the extinction state (V*,W* C*) = (0,0,0) can be written as
follows:

(a+6,)(a+dy)(a+ 3y + 0y + D) =0, (30)



where « is eigenvalue. Hence, & = —d,, d,, and —(J, + d,, + D), that is, all are
negative real.

2.1.3 Non-trivial equilibrium state

From (27), (28) and (29), we can see that at most one non-trivial equilibrium
state exists:

(V*,W*,C*)z(@C*,(l_ﬁ)AC* 00O 0w £ D) ) (31)

0y dw ’ r(BA = 0u){(1 = B)A — dw}

From the condition (26) and the positiveness for (31), we can get the following
condition for the existence of non-trivial equilibrium state (31):

BA > Gy
32
{(15)/\ > b o

This means that the non-trivial positive equilibrium state (31) exists if and only
if the sex-specified birth rate of each sex is larger than the natural death rate.
2.1.4 Asymptotic sex ratio
If 0, = 6,y = 6, we can get the following from (27) and (28):

d

1A =0)V(E) =W ()} = —6{(1 = B)V(¢) - LW (1)} (33)
Therefore, we can get immediately the following:
(L=B)V () = BW () = {(1 = H)V(0) — BW(0)}e ", (34)
This means that, as t — oo, the sex ratio asymptotically converges to that at
birth:
V(t) B
W) 15 (t — o0). (35)

2.1.5 Asymptotic dynamics

From the above result about the asymptotic behavior of sex ratio, let us consider
the following two dimensional dynamical system for 8,, = ., = § instead of three
dimensional one described by (27), (28) and (29) for t > 1:

dVZt(t> = W)+ (1 - BAC() (36)
WO — s+ D)o@ 41 {%ww - c@)} {(W(t) - C®)}. (37)

This system corresponds to that given by (28) and (29) with V() = W (¢)/(1—
B) and 6, = d§,, = 0. Asymptotic behavior of the system given by (36) and (37)



asymptotically coincides with that of (C, W) of the system given by (27), (28)
and (29).
In our analysis for the case when a, — o0, in order to consider the asymptotic

behavior as t — oo, we now focus the two dimensional system given by (36) and
(37) when &, = d,, = 9.

Equilibrium state for the asymptotic two-dimensional system The
extinction state (C*, W*) = (0,0) is always locally stable. This can be easily
shown as described in the section 2.1.2. As for the non-trivial equilibrium state,
from (36) and (37), we can see that at most one exists:

§2(26 + D) 5(26+ D)(1 - B)A )
(0= BN = (1 =B)A} (6= BA{6 — (1= B)A})

From the condition (26) and the positiveness for (38), we can get the condition
for the existence of non-trivial equilibrium state (38), substituting é, = §,, = &
in (32): min{B\, (1 — B)A} > §.

On the other hand, the eigenvalue analysis proves that the non-trivial equi-
librium state (38) exists unstable as a saddle point. Indeed, its characteristic
equation can be written as follows:

2, [(20+D){-0%+ (1 — B)A\*}
(0 = BA{6 = (1 = B)A}

where « is eigenvalue. From (39), we can see that, since the sum and the product
of two roots for (39) are both negative, two eigenvalues are real with different
signs. Fig. 1 shows some trajectories of (C, W) when the non-trivial equilibrium
state (38) exists.

Since the population goes extinct or infinite, depending on the initial state as
shown in Fig. 1 when the non-trivial equilibirium state exists, we now consider
the separatrix which corresponds to the stable manifold for the non-trivial equi-
librium state. Although the stable manifold could not be analytically obtained,
we can numerically draw it as shown in Fig. 2. Numerical result indicates the
followings:

) = ( (39)

+6la—06(26+D)=0,  (39)

1. When both C(0) and W (0) are sufficiently small, the population goes
extinct.

2. When C(0) has an intermediate value, there is such a case that only some
intermediate value of W (0) causes the extinction of population, and too
small or too large W (0) does the growth.

Supposing that the coupling dynamics is sufficiently faster than the temporal
variation of male and female populations, we put dC(t)/dt ~ 0 as an approxi-
mation for the dynamics given by (27), (28) and (29), and get an approximated
two-dimensional differential equations about V and W. For the approximated
dynamical system, we can carry out the same analysis about the asymptotic
states considered above, and get the qualitatively same result.

10



2.2 a.—0
2.2.1 Dynamics of population size

Since this is the case when the sex reversal always occurs, the dynamics of
population size can be written as follows from (21), (23) and (24):

d‘g_it) — S, V() — mV(t) + BAC() (40)
dVZt(t) = S, W) +mV () + (1— BAC(L) (41)
%ﬁ’f) = —(6y 40w+ D)Ct) +r{V () = COHW (@) — C(t)}. (42)

2.2.2 Extinction state

Extinction state (V*,W* C*) = (0,0,0) is always locally stable. This can be
easily shown by the eigenvalue analysis for it. Indeed, the characteristic equation
about the extinction state (V*, W* C*) = (0,0,0) can be written as follows:

(a4 dy)(a+ 0y +m)(a+ 6y + 3 +D) =0

, where « is eigenvalue. From this equation, o = —d,,, —(d, + m), and —(d, +
0w + D), so that three eigenvalues are all negative real.
2.2.3 Non-trivial equilibrium state

From (40), (41) and (42), we can see that at most one non-trivial equilibrium
state could exist:

B

Vo= c*
6y +m
W = % {dfi/\m +(1- 6)A} cr (43)
o §y+ 04+ D |
r { Tt 1} [i {éTfi\n +(1- B)A} - 1}

From the condition (26) and the positiveness for (43), we can get the following
condition for the existence of non-trivial equilibrium state (43):

m
A 0y + ——— 06\
I} > +5U+m6
m

0y +m

BA+(1—BN > 6.

11



The first inequality of (44) means the condition such that the male birth is
larger than the decrease caused by the natural death and the sex reversal. The
second means the corresponding condition for female population such that the
increase caused by the new born and the sex reversal is larger than the natural
death. If and only if these two conditions are satisfied at the same time, the
non-trivial equilibrium state (43) exists. Fig. 3(a) shows the condition for the
existence of non-trivial equilibrium state (43). Figs. 4(a, b) that whether the
population goes extinct or growth depends on the initial condition.

Analyzing the characteric equation for the non-trivial eqilibrium state (43) of
the system given by (40-42), we can obtain the condition for the local stability
(see Appendix D).

2.2.4 Approximation with two-timing method

Now, we apply the two-timing method for the dynamics governed by (40-42) in
order to consider its characteristic nature in detail. Supposing that the change
of coupling dynamics is sufficiently faster than those of male and female pop-
ulations, we put dC(t)/dt = 0 as an approximation for this dynamics given by
(40-42). With dC(t)/dt = 0 at (42), we can get the followings from (40) and
(41):

é%g) = -ﬂ%V@)—nnqw-k%§&wqw—+ﬂva)+g}
S NSTUORTD) (15)
dw;t(t) = —5,W(t)+mV(t)+ Q_Tﬁ))\{ﬂ/(t) +rW(t) + g}
LR rvmwan, o
where
FV@O, W) = r{V(6)+ W (1) + g} — 4’ V(W(2)
= PP{V(t) = W(t) 4+ g}> +4W (t)g] > 0 (47)
and

g:&dﬁw+D. (48)
r

Since the population goes extinct or infinite depending on the initial condition as
shown in Fig. 5 when the non-trivial equilibirium state exists, we again consider
the separatrix. We can numerically draw it as shown in Fig. 6. Numerical result

indicates the followings:

1. When V(0) and W(0) are sufficiently small, the population goes extinct
and when V' (0) and W(0) are sufficiently large, the population will diverge.

12



2. When W (0) has an intermediate value, there is such a case that sufficiently
small value of V(0) causes the extinction of population, and sufficiently
large V' (0) does the growth.

Analyzing the characteric equation for the non-trivial equilibrium state which
is given by (45) and (46), we can obtain the condition for the local stability (see
Appendix E).

2.3 0O0<a.< o

This is the case when the sex reversal occurs at random with a constant rate
after a given age a. as shown in (17). Population dynamics is given by (21-24).
2.3.1 Extinction state

The extinction state (V*, X* W* C*) = (0,0,0,0) is always locally stable. The
characteristic equation about the extinction state (V*, X*, W*,C*) = (0,0, 0, 0)
can be written as follows:

(a+ ) (a+ dw)(a+ 6y + m)(a+ §y + 04 + D) =0, (49)

where « is eigenvalue. Hence, « = —4,, —0y, —(0, + m), and — (6, + 6 + D),
that is, four eigenvalues are all negative real.
2.3.2 Non-trivial equilibrium state

From (21-24), we can see that at most one non-trivial equilibrium state could
exist as follows:

BA(1 — e*‘;vaC)

From the condition (26) and the positiveness for (50), we can get the following
condition for the existence of non-trivial equilibrium state (50):

m

—dpac
BA > 0, + 5 +mﬁ)\e o
m
1—B)A e Ovae S
(1-p/)A+ 5U+m6 e >

13

x+ = PASTC " o
Oy ¢
* _ ﬁ)\{m(l B e_évac) + 6’11} *
V - 61}(671 +m) C
. L fmpx{m(l—e %) +6,}  mBA(L—e %) .
W - 5w { 5U(5v+m) - 51} +(1*6)>‘ C
C* 61} + 5111 + D
r(e= -1 (&= - 1)

(50)



The first inequality of (51) means the condition such that the male birth is
larger than the decrease caused by the natural death and the sex reversal which
follows the age-dependent function (17). The second means the corresponding
condition for female population such that the increase caused by the new born
and the sex reversal which follows the age-dependent function (17) is larger than
the natural death. If and only if these two conditions are satisfied at the same
time, the non-trivial equilibrium state (50) exists. Fig. 3(b) shows the condition
for the existence of non-trivial equilibrium state (50).

Making use of numerical calculations, we get the results given by Fig. 7 about
the parameter dependence of population extinction. From Fig. 7(a), we can
result in the followings:

e When the sex reversal does not occur so often, the population does not
go extinct even if the critical age a. is rather small.

e As the sex reversal rate m gets larger, the population does not go extinct
when a. is larger than a critical value.

e Population goes extinct with sufficiently large sex reversal rate m when
a. is smaller than a critical value.

e When a. is larger than critical value, the population does not go extinct
for any m.

From Fig. 7(b),

e Population goes extinct when the age a. is too small or too large, that is,
too early or too late.

e Even if the age a. has an intermediate value, the population goes extinct
when the sex reversal rate m is too small, while it does not when m is
larger than a critical value.

e When the age a. is larger than a critical value and smaller than another
critical age, the population would not go extinct with any sex reversal rate
m.

e When the age a. is smaller than a critical value, the population would go
extinct except in case of having small sex reversal rate m.

From Figs. 4, we can see that different initial condition causes the dynamics
diffrent.

From Figs. 8, we can see that too small and too large critical age causes the
population goes extinct. From Figs. 9, we can see that too large sex reversal
rate causes the population goes extinct.

2.3.3 Coupling and sex reversal rates

From our numerical calculations shown in Figs. 10(a, b), we can see the follow-
ings:
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e As the coupling coefficient r gets larger, the population does not go extinct
if the sex reversal rate m is sufficiently small.

e Even if r is rather large, the population goes extinct when the sex reversal
occurs so often.

e For the population persistence, the coupling coefficient r has to be suffi-
ciently large. With too small r, the population goes extinct.

2.3.4 Coupling coefficient the critical age a.
As shown in Fig. 11(a), we can see the followings:

e As the coupling rare r gets larger, the population does not go extinct with
the age a. larger than a critical value.

e Population goes extinct when the coupling coefficient r is smaller than a
critical value.

e When the age a. is earlier than a critical, any coupling coefficient r causes
the population extinct.

From Fig. 11(b),

e As the coupling coefficient r gets larger, the population does not go extinct
when the age a. has an intermediate value.

e Population goes extinct when r is smaller than a critical value. In this
case, the critical value for r» would be determined by m.

e When the age a. is smaller than a critical value, the population goes
extinct for any coupling coefficient 7.

e When the age a. is larger than a critical value, the population goes extinct
for any coupling coefficient r.

2.3.5 Effect of the critical age on the equilibrium population sizes

Fig. 12 shows the case when d,, < (1 — 8)A, which means that the female’s
population persistence is possible. As shown in Fig. 12(a), we can see that, if the
critical age a. is sufficiently small for the case when the non-trivial equilibrium
exists, the non-trivial equilibrium population sizes are so large that the region
of initial points to go extinct is much wide. Since the non-trivial equilibrium
point is saddle with a separatrix for the region of initial points to go extinct,
the possibility of population persistence can be regarded as rather low in such
case (also see Figs. 1, 2, 5, 6, and Fig. 12(b)). The later the critical age a. is,
the population persistence is feasible. Further, from Fig. 12(b), we can see that
such the unique and intermediate critical age exists as to make the equilibrium
point the nearest to the origin so that it makes the population persistence the
most possible.
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On the other hand, Fig. 13 shows the case when §,, > (1 — )\, which means
that the female’s population persistence is difficult. As shown in Fig. 13(a), we
can see that, if the critical age a. is too small or too large for the case when
the non-trivial equilibrium exists, the non-trivial equilibrium population sizes
are so large that the region of initial points to go extinct is much wide. Hence,
in such case, the possibility of population persistence can be regarded as rather
low (also see Fig. 13(b)). Lastly, an intermediate range of the critical age a.
could make the possibility of population persistence the higher. Further, from
Fig. 13(b), we can see again that such the unique and intermediate critical age
exists as to make the equilibrium point the nearest to the origin so that it makes
the population persistence the most possible.
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Appendix A

For sufficiently short period h, we calculate the Taylor series expansion of v(a +
h,t + h) as follows:

Ov(a,t) It 0v(a,t)

o 5a T o(h?). (52)

via+h,t+h) = wv(a,t)+

Hence, substituting (52) to (3), we can obtain the following:

v(a+h,t+h)—v(a,t) dv(a,t) N dv(a,t) N o(h?)

h ot oa h

0(h2).

= —51,U(a, t) - M(a)v(a, t) + h

As h — 0 for (53), we can get (6).

Appendix B

By integrating the left side of (6) from 0 to co in terms of a and using (9), (13)
and (18), supposing that the exchange between the integration in terms of a
and the differentiation in terms of ¢ is possible, we can get the following.

* Ov(a,t) *° dv(a,t) B g/oo 3
/0 5t da—i—/o 3 da = o J, v(a,t)da + v(oo,t) — v(0,t)

a

av(t)
= —— = BAC(1). (54)

By integrating the right side of (6) from 0 to oo in terms of a, using (17) and
(18), we can get the following:

—0y h v(a,t)da — /000 M(a)v(a,t)da

0
=—0,V(t) — {O . /Oac v(a,t)da +m - /(:0 U(a,t)da}

— 5, V(t) —m {/OOO o(a,t)da — /O v(a, t)da}

= —5,V(t) —m{V(t) — X(t)}. (55)

From (54) and (55), we can get (21). Similarly, (23) can be derived from (7),
(10), (14), (17) and (19).
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By integrating the left side of (6) from 0 to a. in terms of a, using (9) and
(20), we can get the following:

/ac %_’_@ d
0 da " ot) "

v(ae, t) —v(0,t) + gt/acv(a,t)da

_ ax ()
= v(ac,t) — BAC(t) + —

By integrating the right side of (6) from 0 to a. in terms of a, using (17) and
(20),

(56)

—5/ atda—/M v(a,t)da = 5, X (£). (57)

From (56) and (57), we can get (22).

By integrating (6) and (7) from 0 to oo in terms of a and d’, using (11), (18)
and (19), we can get the followings:

/ ve(a,t)da = / atda—/ / c(a,d,t)dada’
0

= V() -C@), (58)
o0
/ we(a',t)da = / (a’ tdaf/ / c(a,d,t)dada
0 0
= W(t)—C(t). (59)
By integrating the left side of (8) from 0 to oo in terms of both a and a’, using
(11), (12), (15) and (16), we can get the following;:

dc  Oc  Oc ,
/ / (— o0 + at)dcwla
/ / —dada —|—/ / —dada —|—/ / @dada'
o Ot
B d 00 00 , ,
= dt/o /0 cla,a,t)dada

_ o
- == (60)

By integrating the right side of (8) from 0 to oo in terms of a and o', we can
get the following, using (11), (58) and (59):

—(6y + 0w + D) /OO /00 c(a,a’,t)dada’ + 6/00 ve(a, t)da /OO we(a', t)da’
—(0y + 6w + D)C(t) + r{V(t) = C(t)H{W (t) — C(t)}. (61)
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From (60) and (61), we can get (24).

Appendix C

Now, v(ac,t) corresponds to the density of male with age a. at time ¢t. If ¢t > a,,
it originates with the density v(0,¢ — a.) of male newborn at time ¢ — a.. This
is because age increases by the same increment as time does, so that v(ac,t)
originates with the density v(a. —p,t—p) for any p such that 0 < p < a.. Let us
put F(p) =v(a.—p,t —p) (0 <p < ac) for any fixed t > a., then the function
F(p) is assumed to be continuous and sufficiently smooth.

From our modelling, since any male younger than age a. does not make the
sex reversal, the temporal variation of density v(a. — p,t — p) from time ¢ — p
to t — p+ h is only due to the natural death. Therefore, for sufficiently small
period h,

U(acfp+hat*p+h) 7U(acfpat7p) = 76vh'v(ac7pat*p) +O(h2)’
that is,

F(p—h)—F(p)

o(h?)
. )

As t — 0, we can get the following linear differential equation about F'(p):

df;_z(?p) =6,-F(p) (0<p<a.). (62)

As the boundary condition for (62), we use the below, derived from (9):
F(ac) =v(0,t — ac) = BAC(t — ac). (63)

The differential equation (62) of F'(p) with the condition (63) can be easily
solved and the solution becomes

F(p) = v(ac — p,t —p) = PAC(t — a.)e®P~%) (0 < p < a.),
thus lastly, with p — 0,
v(ae,t) = PAC(t — ac)e %% (t > a,). (64)
On the other hand, if t < a., v(a.,t) originates with the density of male with
age a. —t at time 0. Hence, with v(a. —t,0) = vg(a. —t) for any fixed t < a., in
the similar way as above for the case when ¢ > a., we can obtain the following:
v(ae, t) = volae — t)e % (t < a,). (65)

These results (64) and (65) give v(a.,t) of (25).
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Appendix D

We can get the following characteristic equation for the non-trivial equilibrium
state (43) of the system given by (40-42):

a® + {2(6,+6y) + A+ B+ m+ D}a?
+ [(6p + 6w +m){A+ B+ 06, + 0y + D} + 04(6y + m) — (1 — B)AA — BAB]«
+ 0uw(0y + m){A+ B+, + 8y + D}
—{(1 = BABy +m) + mBAYA — 6,8AB = 0, (66)
where A = r(V* — C*), B = r(W* — C*). V*, W* and C* satisfy (43). From

(66), we can formally get the condition for stability, making use of the Routh-
Hurwitz criterion:

8w (8y +m){A+ B+ 3y + 60w + D} — {(1 — B)X(6y +m) + mBA}A — 6, BAB > 0
{2(6, + 64) + A+ B+m+ D}

X[(0y + 0w + M){A+ B+ 0y + 0y + D} + 04 (0y + m) — (1 — B)AA — BAB]

—0uw (0 + m){A+ B+ 08, + 6y + D} — {(1 — B)A(0y + m) + mBA}A — 6,BAB > 0.

Appendix E

We can get the following characteristic equation for the non-trivial equilibrium
state given by (45-46):

o? + {—(51, + 0w +m) + %{ﬁAA +(1 - 5))\3}} oY

N YR Y ((EIY

2 2
1—
g {m + (75))‘/1} =0, (67)
2 2
where
A1 2r(V* — W*) + 2(8, + 0 + D)
V(u + 0w + D+ V> +1W*)2 — 4r2V*W*
Bo1_ 2r(W* = V*)+2(6, + 6 + D)

V(O + 00 + D+ 7V +rW*)2 — 4r2V W
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V*, W* and C* satisfy (43). From (67), we can get the condition for the local
stability:

(B + 8+ m) + S {BAA+ (1 - HAB} <0

{BQ—AA (0 +m)} {%B&ﬂ} - %B {m+ %A} > 0.
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Figure Captions
Fig. 1

Numerical trajectories for the two dimensional system given by (33) and (34).
8=04;A=1.0;6=0.3;D=0.0;7 =1.0.

Fig. 2

Manifolds for the non-trivial equilibrium (C*, W*) about the two dimensional
system given by (33) and (34). Numerically obtained. S = 0.4;A = 1.0;0 =
0.3; D =0.0;r = 1.0.

Fig. 3

(04, 0y )-dependence of the existence of non-trivial equilibrium. (a)Region A is
for the case when a, — 0, and B for a. — +00. (b)For the case when 0 < a. <
+00. p shows the value for §, which satisfies the equation (&, + m)(d, — BA) =
—BAme%vac,

Fig. 4

Temporal variation of population sizes (V' (¢), X (), W(t), ). (a ) (V(O), X (0),W(0),C(0))
(1.0,0.865,1.0,0.0); (b) (V(0), X(0), W(0 ), (0)) =
0.7: A = 1.0;6, = 0.3; 8, = 0.2: D = 0.0: 7 = 1.0;m. :02,%:20

Fig. 5

Numerical trajectories for the two dimensional system given by (46) and (47).
6=07A=10;6,=0.1;6, =0.5;D =0.0;7 =1.0;m = 0.1.

Fig. 6

Manifolds for the non-trivial equilibrium (V*, W*) for the two-dimensional sys-
tem given by (46) and (47). Numerically obtained. 8 = 0.7; A = 1.0;4, =
0.1;6, = 0.5, D = 0.0;7 = 1.0;m = 0.1.

Fig. 7

(m, a.)-dependence of population extinction. Black points indicate the param-
eter set to cause the extinction, estimated by numerical calculations. A\ =
1.0; D = 0.0;r = 1.0; (V(0), X(0), W(0),C(0)) = (1.0,1 — e~*,1.0,0.0); (a)
0w < (1= P)A; 6 = 0.6;0, = 0.2;6, = 0.1;(b) 6,y > (1 — B)A; 8 = 0.7;0, =
0.1; 6, = 0.4.



Fig. 8

Temporal variation of population sizes (V (t), X (¢t), W (t), C(¢)) for m = 5.0. (a)
a. = 2.0; (b) ac = 5.0; (¢) a. =10.0. F=06A=1
0.0;r = 1.0.

Fig. 9

Temporal variation of population sizes (V (t), X (¢), W(t),C(t)) for a. = 1.5. (a)
m = 0.5; (b) m =5.0; (¢c) m =100. 5 =07;A=1
0.0;r = 1.0.

Fig. 10

(r,m)-dependence of population extinction. A = 1.0; D = 0.0; a. = 1.0; (V' (0), X (0), W(0), C(0)) =
(1.0,1 — e=%,1.0,0.0). (a) 6, < (1 — BN = 0.6:6, = 0.2;5, = 0.1; (b)
Sp > (1— BN B = 0.78;5, = 6, = 0.23.

Fig. 11

(r, a.)-dependence of population extinction. A = 1.0; D = 0.0;m = 1.5; (V' (0), X (0), W(0),C(0)) =
(1.0,1 — e=%,1.0,0.0). (a) 6, < (1 — BN = 0.6:6, = 0.2;5, = 0.1; (b)
0w > (1= PB)\;8=0.7;0, = 0.1; §,, = 0.4.

Fig. 12

(a)a.-dependence of the non-trivial equilibrium population sizes V*, X* W* C* V*+
W*. (b)a.-dependence of the distance of equilibrium point from the origin. For

0w < (1 =0)N;8 =051 =1.0;6, =0.2;6, = 0.3;7 = 1.0; D = 0.0;m = 2.0.

The non-trivial equilibrium can exist for 2.0776 < ac.

Fig. 13

(a)a.-dependence of the non-trivial equilibrium population sizes V*, X* W* C* V*+
W*. (b)a.-dependence of the distance of equilibrium point from the origin. For

0w > (1=0)\; 8 =071 =1.0;6, = 0.1; 6, = 04;r = 4.0; D = 0.0;m = 1.5.

The non-trivial equilibrium can exist for 0.8961 < ac < 18.8167.
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