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1 ASSUMPTIONS AND MODELING

1.1 Assumptions

In our modeling, we assume that the unit of infection and recovery is immobile,
as town, plant, etc. we call the unit by the site. We classify the sites into three
classes, depending on the state of site in terms of the epidemics: susceptible,
infective and recovered. In our modeling, we assume the followings:

e We ignore any time delay about the epidemic dynamics, including the
latent period.

e Infection rate depends only on the total number of infective sites.

e Only susceptible site could be infected. Recovered site is never infected
again.

e Infection of susceptible site is independent of any recovery of infective one.
e Infection and recovery of a site is independent of that of any other ones.

In this paper, we consider the number of infective sites, h, and that of infected
sites which consists of infective and recovered, k.

1.2 Modeling

With the assumptions described in the previous section, in case of h infective
sites, we define the following probabilities for the events occurred in sufficiently
short time interval (¢,t + At].

1.2.1 Probability for infection

Probability that a susceptible site is infected by a infective site is assumed to
be given by BAt+ o({At}?) independently of the distance between them, where
[ is a positive constant, the infection rate. Hence, since we assume that the
infection of a susceptible group by an infective site is independent of that by
any other infective one, the probability that a susceptible site is infected by h
infective ones becomes

BhAt + o({At}?). (1)

Probability that more than one susceptible sites are infected during sufficiently
small period At is assumed to be o({At}?). Hence, probability that none of
susceptible sites is infected during sufficiently small period At is given by

1 — [BhAt + o({At}?) + o({At}?)] = 1 — BhAL — o({At}?). (2)



1.2.2 Probability for recovery

Probability that an infective site recovers during sufficiently small period At is
assumed to be given by
YAt +o({At}?), (3)

where v is a positive constant, the recovery rate.

When there are h infective sites, probability that only one infective site
recovers is given by hte probability for the recovery of an infective site and that
for the non-recovery of the other h — 1 infective ones. The former probability
is given by (3). The latter is given by [1 — {yAt + o({At}?)}]"~1, because the
probability for the non-recovery of an infective site is 1 — {yAt + o({At}?)},
and the epidemic state of each site is assumed to be independent of that of any
other one. Hence, taking account of which infective group of h recovers, it is
lastly obtained as follows:

h- {yAt+o({At}?)} - [L — {yAt + o({At}*)}]"
= h-{yAt 4+ o({At}*)}H1 — (h — 1)yAt + o({At}?)}
= yhAt + o({At}?). (4)

Probability that more than one infective sites recover is assumed to be
o({At}?). Thus, from (4) the probability that none of infective sites recovers
during sufficiently small period At is given by

1 — yhAAt — o {AL}2). (5)

From the assumption of independence between infection and recovery, the
probability that both infection and recovery occur during the time period At is
given by o({At}?), because the probability of each of them has the order At at
least.

1.2.3 Transition probability of epidemic state

We donote by P(k, h,t) the probability for the state such as k infected sites and
h infective sites at time ¢t. To determine the probability P(k,h,t), we consider
the transition of state in sufficiently small time interval (¢, ¢+ At].

(k,h,t) — (k,h,t + At): In this case, since there is no change of the number
of infected sites and infective ones, neither infection nor recovery occurs during
time period At. Therefore, from (2) and (5), the transition probability is given
by

[1— BhAL — o({AH2)] - [L - yhAt — o({AL}?)]
= 1- (B+hAt+o({AD?).  (6)



(k—1,h,t) — (k,h,t + At): Since only the number of infected sites increases
by one in this case, one infection and one recovery should occur during time
period At. To increase the infected sites by one, the number of infective sites
increases by one. Hence, in order that the number of infective sites at t+At is h,
the number of infective sites decreases by one during A¢. From the assumption
given in the previous section, both infection and recovery occur during At with
probability o({At}?), so that the considered transition probability is o({At}?),
too.

(k,h +1,t) — (k,h,t + At): In this case, only one recovery occurs during
time period At with no change of the number of infected sites, when any new
infection does not occur. Therefore, from (2) and (4), the transition probability
is given by

[1— B(h+ 1At — o({At}*)] - [y(h + 1) At + o({At}?)]
= y(h+ 1)At + o({At}?). (7)

(k—=1,h = 1,t) — (k,h,t + At): In this case, one infection occurs without
any recovery during time period At. Therefore, from (1) and (5), the transition
probability is given by

[B(h — 1At + o({AL})] - [1 — yhAL — o({At})]
= (h—1)BAt+o({A1}2).  (8)

(k—=0ULh=1t) — (k,h,t+ At) (I > 2): In this case, only infection occurs
[ times without any recovery during time period At. Since more than one
infection occur during At, the transition probability is o({At}?).

(k,h +m,t) — (k,h,t + At) (m > 2): In this case, only recovery occurs
m times without any infection during At. Since more than one recovery occur
during At, the transition probability is o({At}?).

(k=1l,h+n,t) = (k,h,t+At) (n>0;1<1<k—1): In this case, infection
and recovery occur [ and n + [ times respectively during At¢. Since more than
one infection and recovery occur during At, the transition probability is again

o({At}?).

1.2.4 Probability distribution for epidemic state

For the possible transitions of state in sufficiently small time interval (¢,¢ 4+ At]
as derived in the previous section, we can get the following differential equation
for P(k,h,t) (Appendix A):

dP(k, h,t)

dt = 7(ﬂ+7)hp(kahat)



+y(h+ 1)P(k,h+ 1,1)
+8(h — 1)P(k —1,h —1,1), (9)

for k>2, h>1, k> h+1, and the following additional two:

AR08 e, o
dt
ﬂl%&ﬁ = —k(B+7)P(k k1)

+(k—1)BP(k — 1,k —1,1) (11)

for k > 1 (see Appendix B and C).

1.2.5 Initial condition

We assume that the epidemics begins with a site at time 0, so that the initial
condition is given by

1 ifk=h=1,
P(k,h,0) = (12)
0 otherwise.

1.2.6 Expansion of infected range

Next, we consider the range expanded by infected sites, say, the infected range.
We characterize the infected range at time ¢ by the minimal diameter R which
includes all infected sites at t.

In the case when the infected range expands in every direction with the
same probability, the shape of infected region can be approximated by the disc,
and therefore, when the spheric nature of the earth can be negligible and be
approximated well by the plane, the range R approximately has the following
relation with the number of infected sites k: k o R%. However, since the
expansion of infected range is constrained by the spatial distribution of potential
carriers for the considered disease, which could be in general heterogeneous, the
shape is possibly inhomogeneous in direction. It is likely that the shape can be
characterized by its fractal nature (for the concept of “fractal”, for instance, see
Mandelbrot, 1982). To deal with such case, we assume the generalized relation
between the infected range and the total number of infected sites as follows:

kxR (1<d<2), (13)

where the power d characterizes the spatial pattern of infected region occupied
by infected sites (Fig. 1). Power d is called cluster dimension or mass dimension,
which is a sort of fractal dimension. When d = 2, the spatial distribution of
infected sites can be approximated by a disc. When d =~ 1, the distribution can



be approximately regarded as one dimensional, that is, the infected sites can be
regarded to be arrayed along a curve.

For convenience to apply the relation (13) for our modeling, we now define
the proportional constant C:

Ek=CRY (1<d<2). (14)

Next, we define the mean distance E(g) from one site to the nearest neighbour
(Fig. 2). In our modeling, R(g) is assumed to be corresponding to the expected
infected range expanded by two infected sites, that is, k = 2. Therefore, from
(14), we assume that

—d
Hence, from (14), for the ezpected number of infected sites (k); at time ¢, we
assume the following relation for the expected infected range 7; at time ¢:

(k)e =27}  (1<d<2), (16)
where T; is the expected infected range measured in the mean distance E(Q) at
time t: Ty = Rt/ﬁ@).

Further, we can define the ezpected velocity V; of expansion of the infected
range at time t as follows:
—  dry
Vi=—.
YTt
So, from (16), we can derive the following relation between the expected velocity
V: and the expected number (k); of infected sites at time ¢:

2 Analysis

2.1 Probability generating function
We at first introduce the probability generating function (p.g.f.) defined by

k

f(z,y,t iZtht (18)

k=1 h=0
From (12), the initial condition for f(z,y,0) is given by
o k
53 Pl
h=0

(1,1,0)xy
= zy. (19)

f(x,y,0)

I
o

10



(@)

(b)

Figure 1: Tllustrative explanation of the relation of the fractal dimension d to the spa-
tial pattern of infected site distribution. Schematic procedure of epidemic expansion is
also shown. White disc indicates susceptible site, black infective, and grey recovered.
(a)d~1;(b)1<d<2;(c)d=2.

range occupied by

two sites

Figure 2: Tllustrative explanation of range R(2).
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In addition, the following condition can be derived:

ook

F(1,1,0) :ZZ (k,h,t) (20)
k=1 h=0

because the sum of probability for any possible k& and h corresponds to the
occurrence of any event.
From (18), the partial derivative of f(x,y,t) in terms of ¢ becomes

0f (x,y,t) X GNPk, B t)
—— Y Y sty

B OP(k,0.1)

ot
k=1

oo k-1
OP(k,h,t
+Z Z%xkyh (21)

Applying (9), (10) and (11) for (21), we can derive, with a cumbersome and
careful calculation, the following partial differential equation for f(z,y,t):

of (x,y,t) f (z,y,1)
ot oy

With condition (19) and (20), we can directly solve (22) as follows (for
instance, see Bailey, 1957):

v- (x){er (CL') - y} + U+(I'){y —v_ (x)}e*ﬁl’{’u+(9§)7v, (z)}t
{vi(z) — y} + {y — v—(z) e Palvs(@—v-(2)}t

where vy (x) and v_(z) are functions of x, given by two distinct roots of the
following equation in terms of &:

—(B+7)E+ v+ Bxg® =0,

= {=(B+)y+7+ Bay®} (22)

flz,y,t) =z

, (23)

2.2 Expected number of infective sites

We denote by (h); the expected number of infective sites at time ¢. It is defined
by

o~ k
=> Y hP(k,h,t). (24)

k=1h=1

12



From (9) and (11), we can obtain the following:

k=1 h=1
oo k—1 )
_ dP(k,h,t) dP(k,k,t)
N Z h dt +Zk dt
k=1h=1 k=1
co k
= (B=7D_Y hP(k,h,t)
k=1 h=1
= (5—7)<ht

This ordinary differential equation about (h); can be easily solved as follows
(Fig. 3):

(h)y = P, (25)

where we used the initial condition (12) for (24) so that (h)g = 1. There is
another derivation of the explicit form (25) of (h); with the p.g.f. (23). From
the definitions (18) and (24), we have the following relation between f(z,y,t)
and (h);:

_of

(h)y = 5~ :
S (1,1,)

(26)
From (23) and (26), we can obtain (h); given by (25) again.

2.3 Expected number of infected sites

As for infected sites, we denote by (k); the expected number of infected sites at
time ¢. It is defined by

[e%) k
(kye=> k {Z P(k,h, t)}. (27)
h=0

k=1

From (9), (10) and (11), we can obtain the following:

d > &N dP(k, b, t)
ke = szidt

k=1h=0
oo k—1 00 00
B dP(k, h,t) dP(k,0,t) dP(k, k,t)
o Z k dt + Z k dt + Z k dt
k=1h k=1 k=1

13
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Figure 3: Temporal development of expected numbers of infective sites (h): and
infected sites (k);. (a) B> ; (b) B="; (¢) B<7~.

(Koo @ ®) « (K

Figure 4: Parameter dependence of the saturated value of (k):, (k)t—oo. (a) (-
dependence, v=0.5; (b) y-dependence, 3=0.5.

With (25), we can solve this differential equation and get the following (Fig. 3):

g _
kY, = ——{eP -1} +1, 28)
(k)¢ 71 } (
where we used the initial condition (12) for (27) so that (k) = 1. There is
another derivation of the explicit form (28) of (k); with the p.g.f. (23), making
use of the following relation between f(x,y,t) and (k):, the same as in case of

<h>t1

_of

= ) (29)
Ox (1,1,1)

(k)

Now, we consider the saturated value of (k);. From (28), for 5 > « when the
infection rate is not less than the recovery rate, the value becomes positively
infinite. On the other hand, for 8 < « when the recovery rate is greater than
the infection rate, the saturated value is as follows (Fig. 4):

-0
(K)o = 1 (30)

14



2.4 Expected infected range

Ty = <<k—2>t>1/d, (31)

making use of (28), we can consider how the expected infected range 7; depends
on the fractal dimension d for the distribution of susceptible sites. For 0 <
B/~ < 1/2, when the recovery rate is sufficiently greater than the infection rate,
the expected infected range 7; gets larger as d is larger (Fig. 5(a)). This means
that the infected range is expected to become wider as the susceptible sites are
more uniformly distributed. In contrast, for 3/v > 1/2, the expected infected
range gets smaller as d is larger (Fig. 5(b-d)). In this case, the infected range is
expected to be narrower as the susceptible sites are more uniformly distributed.
Therefore, in our model, only if the infection rate is smaller than half of the
recovery rate, the more uniform distribution of susceptible sites causes the wider
expected infected range (Fig. 6).

Now, we consider the saturated value of expected infected range as ¢t — oco.
From (28) and (31), for 8 > ~ when the infection rate is greater than the
recovery rate, the value becomes positively infinite as ¢ — oo (Fig. 5(c, d)). On
the other hand, for § < v when the recovery rate is greater than the infection
rate, it is saturated to the following value as ¢ — oo (Fig. 5(a, b)):

1/d
Ft—m)c = (7<k>t—>oc )
2

- (55)

2.5 Expected expansion velocity of infected range

Since, from (16),

When 8/ < 1, that is, when the recovery rate is not less than the infection
rate, the expected velocity V; given by (17) monotonically decreases in time
(Fig. 7(a)).

When 1 < /7 < d, that is, when the infection rate is greater than the
recovery rate and small enough so as for 3/ to be less than d, the expected
velocity V; decreases in the earlier period and then turns to increase monoton-
ically (Fig. 7(b)). We denote by t. the time when the expected velocity turns
from decreasing to increasing. From (17), we can get the following:

1 gl
te=—-——In-=d 33
B-v B ()
From (25), (28) and (33), we can obtain (h), and (k), as follows:
i
h)y, =-=d
( >tc 6

15



Figure 5: Temporal development of the expected infected range. (a) 0 < 3/y < 1/2,
calculated for 8 = 0.3 and v = 0.8; (b) 1/2 < 8/~ < 1, calculated for 8 = 0.3 and
~v=10.5; (c) 1 < B/v < d, calculated for 8 = 0.55 and v = 0.5; (d) 8/v > d, calculated
for = 0.55 and v = 0.5.

oy @ P O

1.24

1

8
=

13

1.22
0.86 1.2
1.18
1.16
1.14
1.12

1.2 1.4 1.6 1.8 2 d 1.2 1.4 1.6 1.8 2 d

Figure 6: d-dependence of the saturated value of expected infected range. (a) 0 <
B/~ < 1/2, calculated for 8 = 0.3 and v = 0.8; (b) 3/v > 1/2, calculated for 8 = 0.3
and v = 0.5.
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Figure 7: Temporal development of the expected expansion velocity of infected range.
(a) 0 < B/ <1, calculated for 3 = 0.3 and v = 0.5; (b) 1 < 3/v < d, calculated for
B =0.5and v =04; (c) 8/v > d, calculated for 8 = 0.5 and v = 0.4.

_d-1)
<k>tc7 ﬁ—’)/

When /v > d, that is, when the infection rate is sufficiently greater than
the recovery rate, the expected velocity V; monotonically increases in time
(Fig. 7(c)). .

Now, we can see how the expected velocity V; depends on the fractal di-
mension d of the distribution of susceptible sites. The expected velocity gets
smaller as d is larger (Fig. 7(a-c)) for any value of 3/7. Therefore, in our model,
the more uniform distribution of susceptible sites causes the slower expansion
of infected range.

2.6 Probability of termination of infection

We denote by Pr—g the probability of termination of infection (Fig. 8). Once an
infective site disappears in space because of the recovery, the infection can no
longer continue and restart. If the infection terminates at time ¢, the epidemic
state at time ¢t — At should be with only one infective site for sufficiently small
At, and it should recover during At without causing any new infection. When
the number of infected sites is k, from (2) and (3), the probability is given by:

P(k,1,t)[1 — BAt — o({At}?)] - [yAt + o({At}?)]
=yP(k,1,t)At + o({At}?). (34)

Therefore, the probability of termination of infection between t — At and t is
given by the sum of (34) over any possible k. Hence, we can lastly derive the
following definition for the probability of termination of infection (Fig. 8):

Jo%S) e}
Py = / > Pk, 1, t)dt
0 k=1

dt

Y
0 oy z=1,y=0

Y R (C R )
B /0 LR T e
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@ (b)

Figure 8: Parameter dependence of the probability of termination of infection, Py—o.
(a) B-dependence; (b) y-dependence.

= min{%, 1}. (35)

The probability Pr—q is 1 for 8 < v when the recovery rate is greater than the
infection rate. This case is when the infection certainly terminates. When the
infection rate is greater than the recovery rate, it is proportional to the recovery
rate and inversely proportional to the infection rate (Fig. 8).

2.7 Expected time at the termination of infection

We denote by (t),—o the expected time for the termination of infection. From
the arguments in the previous section, we can give it as follows:

oo

(thheo = /O ty Y P(k,1,t)dt
k=1
+00 if 8> ~;
= (36)
1 Y.
~1 f :
gihy—p MO

For 8 < v when the recovery rate is greater than the infection rate, we can
expect the infection terminates at a finite time (t),—¢. In this case, the expected
time is longer as the infection rate is greater, and shorter as the recovery rate
is greater (Fig. 9).

2.8 Expected number of infected sites at the termination
of infection

We denote by (k)n—o the expected number of infected sites at the termination
of infection. fooo ~vP(k,1,t)dt is the probability that the number of infected
sites is k£ at the moment of termination of infection. Therefore, we can get the

18



Figure 9: Parameter dependence of the expected time of termination of infection
(t)h=0. (a) B-dependence; (b) v-dependence.

following:

(kYp—o = Zk/ooovP(k,l,t)dt

> kP(k,1,t)dt
k=1
9
Jy
9

_ of

A e

_ > of

A m(a ) dt

N vvﬁ (37)

From (30) and (37), we can see that the expected number of infected sites
at the moment of termination of infection, (k),—¢ is identical to the saturated
value of (k)t, (k)t—oco. Therefore, we can get the following:

(k)h=0 = (k)t—o0

Therefore, (k)n—o has the natures same as shown in Fig. 4 for (k);—.o. Hence,
the expected range at of termination of infection is also equal to the saturated
range of Ty, Tt .. From these correspondence, the saturated state indicates
when the infection terminates.
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Appendix A

With transition probabilities (6), (7) and (8) for possible transitions of state in
sufficiently small time interval (¢,t 4+ At], we can derive the following equation
from the definition of P(k, h,t):

P(k,h,t + At) = P(k,h,t)-[1 — (8 +7)hAt + o({At}?)]
+P(k,h41,t) - [y(h + 1) At + o({At}?)]
+P(k—1,h—1,8) - [(h— 1)BAL + o({At}?)]

+iP(k —Lh=1,t)-o({At}?)

+ i Pk, h+m,t) - o({At}?)

m=2
k—1 oo

+Y NPk =1 h+n,t) - o({AL}?),

=1 n=0

for k> 1, h >0, k> h+ 1. Therefore, we can obtain the following:

P(k7h,t+AAtl)t—P(k’7hvt) = P(k,ht)- [—(ﬁ+7)h+%?2)}
P(k,h+1,t) [v<h+1)+ O({iiim]
+p(k1,h17t)'{(h1)ﬂ+%§}2)}
+ZP —Lh=1t)- ({it})
+7§::2P(k,h+m,t)'0({§7?2)
+':z§§%p — L h4n,1)- ({ii}Q' (38)

As At — 0 for (38), we can get the differential equation (9).
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Appendix B

In order to determine the probability P(k,0,t), we consider the following transi-
tions of state in sufficiently small time interval (¢, ¢+ At] as in case of P(k, h, t).

(k,0,t) — (k,0,t + At): In this case, since there is no infective site at time ¢,
neither infection nor recovery occurs during time period At, that is, the
epidemic state never changes. Therefore, the transition probability is 1.

(k,1,t) — (k,0,t + At): In this case, only one recovery occurs during time pe-
riod At with no change of the number of infected sites, when any new
infection does not occur. Therefore, from (2) and (3), the transition prob-
ability is given by

[1— BAL— o({AL)] - AL+ o({AL})] = 7AL +o({A1)).  (39)

(k,m,t) — (k,0,t + At) (m > 2): In this case, only recovery occurs m times
without any infection during At¢. Since more than one recovery occur
during At, the transition probability is o({At}?).

(k—=1,n,t) — (k,0,t + At) (n>0;1<1<k—1): In this case, infection and
recovery occur [ and n + [ times respectively during A¢. Since more than

one infection and recovery occur during At, the transition probability is
again o({At}?).

For these possible transitions of state in sufficiently small time interval (¢, t+
At], from the definition of P(k,0,t), we can derive the following equation:

P(k,0,t + At) = P(k,0,t)-1
+P(k,1,t) - [YAt 4+ o({At}?)]

£S5 Pl m 1) - ol (A1)

k—1 oo

+Y N Pk —1,n,t) - o({AL}?)

=1 n=0

for k > 1. Therefore, we can obtain the following:

P(k,0,t + At) — P(k,0,t) o({At}?)
Az = P(k‘,l,t)- |:’7+T]

+3° P(km, 1) 2D

m=2

k—1 oo o 2
+3 N Pl —1n,t) - %. (40)
=1 n=0
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As At — 0 for (40), we can get the differential equation (10) for P(k,0,t).

Appendix C

In order to determine the probability P(k,k,t), we consider the transition of
state in sufficiently small time interval (¢,¢ + At].

(k,k,t) — (k,k,t + At): In this case, since there is no change of the number of
infected sites and infective ones, neither infection nor recovery occurs dur-
ing time period At. Therefore, from (2) and (5), the transition probability
is given by

[1 — BEAt — o({At}?)] - [1 — vEAL — o({At}?)]
=1— (B+7)kAt +o({At}?). (41)

(k—1,k—1,t) — (k,k,t + At): In this case, only one infection occurs without
any recovery during time period A¢. Therefore, from (1) and (5), the
transition probability is given by

[B(k = DAL+ o({At}?)] - [1 = 5(k — 1) At — o({At}?)]
= B(k — 1)At + o({At}?). (42)
(k—ULk—n,t)— (kk,t+At) (I>2;n>2;n>1): Inthis case, infection and

recovery occur | and n — [ times respectively during time period At. Since

more than one infection and recovery occur during At, the transition prob-
ability is o({At}?).

For these possible transitions of state in sufficiently small time interval (¢, ¢+

At], with the definition of P(k,k,t), (41) and (42), we can derive the following
equation:

P(k,k,t+At) = P(k,k,t)-[1— (84 7)kAt + o({At}?)]
+P(k—1,k—1,t)-[(k—1)BAt + o({At}?)]

o0
+Y Pk —1,h—1,t) - o({At}?)
1=2
for k > 1. Therefore, we can obtain the following:

Pk, k.t + At) — Pk, k, 1)
At

=k [(3s KA

+P(k—1,k—1,t)- {(kl)“%ﬁﬂ
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+ip(k4,h4,t)~%§}2). (43)
=2

As At — 0 for (43), we can get the differential equation (11) for P(k, k,t).
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